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Abstract

In this article we provide further evidence for the monstrous pro-
posal of Daniel Allcock, by giving a plausible but still conjectural ex-
planation for the deflation relation in the Coxeter group quotient of
the orbifold fundamental group.

1 Introduction

A simply laced Coxeter diagram is just a graph for which any two distinct
nodes are either disconnected or connected by a single bond. All Coxeter
diagrams in this paper are simply laced, and therefore we shall simply write
Coxeter diagram for the longer phrase simply laced Coxeter diagram. Stan-
dard examples are the Coxeter diagrams of type An with n nodes labeled
1, · · · , n and only successive nodes are connected, or the Coxeter diagram
of type Ãn with (n + 1) nodes labeled 0, 1, · · · , n with successive vertices
connected together with a connection from n to 0.

Deleting some nodes from a Coxeter diagram together with all bonds
connected with at least one of them gives a Coxeter subdiagram. For exam-
ple the Coxeter diagram of type Ãn has the Coxeter diagram of type An as
subdiagram by deleting the node with label 0 and the two bonds connected
to this node. A Coxeter subdiagram of type Ãm in a bigger Coxeter diagram
Xn is called a free (m + 1)-gon in Xn. For p, q, r ∈ N the Coxeter tree dia-
gram of type Ypqr has n = (p+q+r)+1 vertices labeled 0, 1, · · · , (p+q+r),
with a unique triple node 0 connected to the first nodes of three Coxeter dia-
grams of types Ap, Aq, Ar. Of special interest are the Ypqr Coxeter diagrams
of the finite type An = Y(n−1)00, Dn = Y(n−3)11 for n ≥ 4 and En = Y(n−4)21

for n = 6, 7, 8 for which

1/(p + 1) + 1/(q + 1) + 1/(r + 1) > 1 ,
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and of the affine type Ãn, D̃n and Ẽ6 = Y222, Ẽ7 = Y331, Ẽ8 = Y521 for
which

1/(p + 1) + 1/(q + 1) + 1/(r + 1) = 1 .

If Xn is some Coxeter diagram with n vertices then the Artin group
A(Xn) is by definition the group with generators Ti for each node i of Xn

and relations
TiTj = TjTi , TiTjTi = TjTiTj

if either i and j are disconnected or connected respectively. In the former
case Ti and Tj commute and in the latter case they braid. The quotient
group of A(Xn) by the quadratic relations

T 2
i = 1

is called the Coxeter group W (Xn) of type Xn. For a connected Coxeter
diagram Xn the groupW (Xn) is finite precisely for the finite type diagrams.
For the affine type diagrams X̃n (with X = A,D,E) the Coxeter group
W (X̃n) has a free Abelian normal subgroup of rank n with finite quotient
group W (Xn). In this case the quotient map

W (X̃n) →W (Xn)

is called deflation, and for the diagram X̃n = Ãn one speaks about deflation
of this free (n+ 1)-gon.

If the connected Coxeter diagram of some type Xn is neither of finite
type nor of affine type then the Coxeter group W (Xn) is of exponential
growth. However for some special Coxeter diagrams the group W (Xn) has
a remarkable finite quotient with a fairly simple presentation.

Label the generators of the Artin group A(Ẽ6) by a, b1, b2, b3, c1, c2, c3
with a the generator corresponding to the triple node, with c1, c2, c3 the three
generators corresponding to the three extremal nodes and bi the generator
that braids with a and ci for i = 1, 2, 3. The element

s = ab1c1ab2c2ab3c3

is called the spider element. The next remarkable result is due to Ivanov
and Norton [27],[34].

Theorem 1.1 (Ivanov and Norton). The group W (Y555) modulo the spider
relation s10 = 1 is equal to the wreath product M ≀ 2 = (M ×M)⋊ S2 (also
called the bimonster) with M the Fischer–Griess monster simple group.
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The impact of the relation s10 = 1 in W (Ẽ6) is to condense the six
dimensional translation (root) lattice Q to the finite group Q/3P of shape
35 with P > Q the index three (weight) overlattice, as I understand from
Simon Norton.

Conway and Simons showed that by increasing the number of generators
this presentation takes a simpler form [14]. Let I26 be the incidence graph
of the projective plane P

2(3) over a field of 3 elements. The nodes are the
points and the lines of the projective plane, and two nodes are connected if
they are incident. The Coxeter diagram Y555 is a maximal subtree of I26.

Theorem 1.2 (Conway and Simons). The bimonster M ≀2 is obtained from
the Coxeter group W (I26) by deflating all free 12-gons in I26.

We shall denote ω = (−1 +
√
−3)/2 and θ = ω − ω =

√
−3. Let

E = Z+Zω be the ring of Eisenstein integers. By an Eisenstein lattice L we
shall mean a free E-module of finite rank with a Hermitian form 〈·, ·〉 on L
such that 〈λ, µ〉 ∈ θE for all λ, µ ∈ L. A vector ε ∈ L with norm 〈ε, ε〉 = 3
is called a root in L. The triflection

tε(λ) = λ+ (ω − 1)
〈λ, ε〉
〈ε, ε〉 ε

with root ε is an order three complex reflection leaving L invariant. We
denote by U(L) the group of all unitary automorphisms of the Eisenstein
lattice L. An Eisenstein lattice L is called Lorentzian if its Hermitian form
〈·, ·〉 is nondegenerate of signature (rk(L)−1, 1), and called Euclidean if 〈·, ·〉
is positive definite. In the Lorentzian case

B(L) = P({z ∈ C⊗ L; 〈z, z〉 < 0})

is the complex hyperbolic ball associated with L. The group Γ(L) := PU(L)
acts properly discontinuously on B(L) with quotient space

(B/Γ)(L) := B(L)/Γ(L)

the ball quotient associated with L. For a root ε ∈ L the hyperball

P({z ∈ C⊗ L; 〈z, z〉 < 0, 〈z, ε〉 = 0})

is called the mirror for the root ε, and we write B◦(L) for the complement in
B(L) of all such mirrors. The quotient of all the mirrors in B(L) is a divisor
∆(L) in (B/Γ)(L), called the discriminant, and so (B◦/Γ)(L) is called the
discriminant complement.
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A connected Coxeter diagram of some type Xn is called bipartite if the
n nodes can be coloured black or white, such that bonds only connect black
and white nodes. For a Coxeter tree diagram such a bipartition is always
possible, and for the incidence diagram I26 one just colours points black
and lines white. With a bipartite Coxeter diagram Xn we can associate an
Eisenstein lattice L(Xn) with basis εi indexed by the nodes. The Hermitian
form is defined by

〈εi, εi〉 = 3 , 〈εi, εj〉 = 0 , 〈εp, εl〉 = θ

for all i, for all disconnected i 6= j and for all connected black p and white
l. It is easily checked that the map

A(Xn) → U(L(Xn)) , Ti 7→ tεi

extends to a Hermitian representation of the Artin group A(Xn) on the
Eisenstein lattice L(Xn). In fact, for a Coxeter tree diagram this is just the
reflection representation of the Hecke algebra of type Xn (with quadratic
Hecke relation (T − 1)(T + q) = 0) with parameter q = −ω as constructed
by Curtis, Iwahori and Kilmoyer [18].

The automorphism group U(L(A4)) of the Euclidean Eisenstein lattice
L(A4) is generated by triflections (Theorem 5.2 of [1]), and is equal to the
group ST32 in the Shephard–Todd list of finite irreducible complex reflection
groups [38]. Let us denote by H the Eisenstein hyperbolic plane, with basis
ε1, ε2 and Hermitian form given by 〈ε1, ε1〉 = 〈ε2, ε2〉 = 0 and 〈ε1, ε2〉 = θ.
The following two Lorentzian Eisenstein lattices

LDM = H ⊕ L(A4)⊕ L(A4)

LA = H ⊕ L(A4)⊕ L(A4)⊕ L(A4)

play a central role in this paper, and we shall call them the Deligne–Mostow
lattice and the Allcock lattice respectively. The ball quotient (B/Γ)(LDM)
is the largest dimensional one on the list of Deligne–Mostow ball quotients
associated with Lauricella hypergeometric period integrals [20],[33],[42]. The
Eisenstein lattice L(A11) has a one dimensional kernel with quotient lattice
LDM. Likewise the Eisenstein lattice L(Y555) has a two dimensional kernel
with quotient lattice LA. Hence the triflection representations on L(A11)
and L(Y555) induce natural homomorphisms

Br12(C) = A(A11) → U(LDM) , A(Y555) → U(LA)

with Br12(C) the Artin braid group on 12 strands in C. Both these homo-
morphisms are surjective. For the Deligne–Mostow lattice this was shown
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by Allcock (in Theorem 5.1 of [1]), and for the Allcock lattice this has been
proven by Basak (in Theorem 1.1 of [7]).

In his monstrous proposal Allcock made a remarkable conjecture [2].

Conjecture 1.3 (Allcock). The quotient of the orbifold fundamental group

G(LA) = Πorb
1 ((B◦/Γ)(LA))

by the normal subgroup N generated by the squares of the meridians is the
bimonster M ≀2. By a meridian is meant a small loop in (B◦/Γ)(LA) that en-
circles the discriminant ∆(LA) once positively at a generic point of ∆(LA).

The original evidence for Allcock was rather modest and based on the
occurrence the Y555 diagram both in the Ivanov–Norton theorem and in
his description of the lattice LA. Additional evidence for the conjecture of
Allcock has been supplied by subsequent work of Basak [7],[8].

Theorem 1.4 (Basak). The Hermitian form of the Eisenstein lattice L(I26)
has a kernel of dimension 12 and the quotient of L(I26) by this kernel is equal
to the Allcock lattice LA.

This is a remarkable observation, but the proof is straightforward. For l
the index of a white node (l for line) put

δl = −θεl +
∑

p∼l

εp

with p ∼ l meaning that the corresponding nodes are connected (p a point
on l). Then an easy verification yields

〈δl, εq〉 = 0 , 〈δl, εm〉 = θ

for all black nodes q and white nodes m. Just distinguish q on l or not on
l, and m equal l or not equal l. Hence δl − δm is a null vector for any two
white nodes l and m, and these vectors span the kernel of dimension 12.

The quotient of the triflection representation yields a homomorphism

A(I26) → U(LA)

which a fortiori is surjective. By definition the orbifold fundamental group
G(LA) of (B

◦/Γ)(LA) gives rise to an exact sequence

1 → Π1(B
◦(LA)) → G(LA)

π→ Γ(LA) → 1

of groups. The following result is due to Basak [8].
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Theorem 1.5 (Basak). There exists a natural homomorphism

ψ : A(I26) → G(LA)

whose composition with π : G(LA) → Γ(LA) is the triflection homomorphism
A(I26) → Γ(LA) discussed above.

Basak makes a convenient choice of base point w0 ∈ B
◦(LA), which he

calls the Weyl point. He shows that there are exactly 26 mirrors in B(LA)
at minimal distance from w0. The loop in G(LA) starting at w0 along the
shortest geodesic to such a mirror, making a third turn near the mirror
and continuing geodesically to the image tiw0 is denoted by Ti. Notably Ti
becomes a meridian in G(LA). Using a computer algorithm Basak shows
that these Ti satisfy the braid relations of the incidence diagram I26. The
following result was conjectured by Basak [8] and subsequently proved by
Allcock and Basak [4].

Theorem 1.6 (Allcock and Basak). The homomorphism A(I26)
ψ→ G(LA)

of the previous theorem is surjective.

Let B(VA) be the real hyperbolic ball of dimension 13 through w0 con-
taining these 26 geodesics departing from w0. Each of the 26 mirrors inter-
sects B(VA) in a real hyperball. If P ⊂ B(VA) is the hyperbolic polytope
bounded by these 26 hyperballs, then P is an acute angled convex polytope
of finite volume by the Vinberg criterion, as explained in more details in
Section 5 and Section 8. Based on the analogy with the Deligne–Mostow
ball quotient we are inclined to believe that the following conjecture holds.

Conjecture 1.7. The interior of P in B(VA) is contained in B
◦(LA).

The epimorphism ψ : A(I26) → G(LA) descends to an epimorphism
ϕ : W (I26) → G(LA)/N with N the normal subgroup of G(LA) generated
by the squares of the meridians. Our conjecture that the interior of the
polytope P does not meet any mirrors can be used to show that for each
free 12-gon in I26 the epimorphism ϕ factorizes through the deflation of the
corresponding subgroup W (Ã11). Hence ϕ : W (I26) → G(LA)/N factorizes
through the bimonster M ≀2 by the Conway–Simons theorem. This provides
a good deal of evidence for the conjecture of Allcock.

I would like to thank the Mathematisches Forschungsinstitut at Ober-
wolfach for the kind hospitality while part of this work was done. I also like
to thank Tathagata Basak, Bernd Souvignier and the referee for useful com-
ments. This paper is dedicated to Eduard Looijenga for his 69th birthday
in gratitude for the friendship and the beautiful mathematics. Notably our
collaboration for the papers [23] and [16] has been a great joy.
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2 Theorem of Deligne–Mostow

Let n ≥ 4 and 0 < µ1, · · · , µn < 1 be rational numbers with
∑

µi = 2.
Let us write µi = mi/m with 1 ≤ m1, · · · ,mn < m relatively prime natural
numbers. For n distinct ordered points z1, · · · , zn ∈ C the curve

C(z) : ym =
n
∏

1

(x− zi)
mi

has an action of the group µm = m
√
1 by multiplication on y, and the quotient

map C(z) → P is a ramified covering of the Riemann sphere P = C ⊔ {∞}.
The differential dx/y is holomorphic on C(z) and the period integral

∫ zj

zi

dx

y

along a path on C(z) from a point above zi to a point above zj is a
Lauricella hypergeometric function, as holomorphic function of the vari-
able z = (z1, · · · , zn). They are solutions of the Lauricella hypergeometric
equation, which has a solution space of dimension n − 2. The underlying
space on which these functions and differential equation live is the moduli
space M0,n, and even M0,n/Sm with Sm = {σ ∈ Sn;mσ(i) = mi ∀ i}.
The dual of the local solution space (of dimension n− 2) around some base
point has a Hermitian form of Lorentzian signature, which is invariant under
the monodromy representation of the fundamental group Πorb

1 (M0,n/Sm).
The projectivized evaluation map induces multivalued locally biholomorphic
map from M0,n/Sm to the corresponding hyperbolic ball B (of dimension
n−3). The image Γ of Πorb

1 (M0,n/Sm) under the projectivized monodromy
representation acts on B, and Deligne and Mostow analyzed the question
for which parameters m1, · · · ,mn and m the group Γ is a discrete cofinite
volume subgroup of Aut(B).

Theorem 2.1 (Deligne and Mostow). If for each pair i < j with µi+µj < 1
we have 1− µi − µj = 1/mij with mij ∈ N (or slightly weaker mij ∈ N/2 in
case µi = µj) then Γ < Aut(B) is a discrete cofinite volume subgroup, and
we have a commutative diagram with horizontal arrows period isomorphisms

M0,n/Sm
Per−−−−→ B

◦/Γ




y





y

M0,n/Sm
GIT Per−−−−→ B/Γ

BB
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with overline index GIT a geometric invariant theory compactification of
M0,n/Sm, allowing stable (respectively strictly semistable) collisions of the
subset of ramification points {zi; i ∈ I} in case

∑

i∈I µi < 1 (respectively
∑

i∈I µi = 1), with B
◦/Γ a Heegner divisor complement in B/Γ, and with

the overline index BB the Baily–Borel compactification of B/Γ.

For n = 4 this theorem goes back to the 19th century work of Schwarz
and Klein on the Euler–Gauss hypergeometric equation [28]. First attempts
for a multivariable extension by Picard were incomplete, and the above result
was found in 1986 by Deligne and Mostow [20]. The extension mij ∈ N/2
if µi = µj was observed by Mostow [33]. The tables found by Deligne and
Mostow for n ≥ 5 had some errors, and the correct computer made table
with 94 cases was given by Bill Thurston [42]. In 16 cases the group Γ is
not an arithmetic group. The search for these was one of the motivations
of Mostow for this work. Expositions of the work by Deligne–Mostow were
given by Couwenberg in the second chapter of his PhD [15] and by Looijenga
[32]. Initial steps towards a generalization of the Deligne–Mostow theory in
the context of hypergeometric functions associated with root systems were
taken Couwenberg in his PhD of 1994, and thanks to deep insight of Eduard
Looijenga this project was finally brought in 2005 to a good end [16].

Some examples of the Deligne–Mostow list had been found before by
Shimura [39]. In his PhD of 1966 (wih Shimura as advisor) Bill Casselman
already found by arithmetic methods but under the restrictive assumption
that m is prime number the complete list (consisting of just 3 cases for
n ≥ 5. One might wonder whether the arithmetic method of Casselman can
be improved to recover the full arithmetic part of the Deligne–Mostow list
(of 94− 16 = 78 cases for n ≥ 5).

The largest dimensional example on the Deligne–Mostow list is in case
n = 12 and µi = 1/6 for all i, or equivalently m = 6 amd mi = 1 for all i.
The corresponding ball quotient comes from the Eisenstein lattice LDM =
L(A10). Since L(A11) and L(Ã11) have a kernel of dimension one and two
respectively with quotient lattice LDM we do get triflection homomorphisms

A(A11), A(Ã11) → U(LDM)

which are in fact surjective [1]. This homomorphism is just the monodromy
representation of the fundamental group Πorb

1 (M0,12)/S12 for the related
Lauricella hypergeometric system. Note that A(A11) is just the original
Artin braid group Br12(C) on 12 strands in C, and A(Ã11) is the affine
Artin braid group Br12(C

×) on 12 strands in C
×.
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We now consider the ball quotient (B/Γ)(LDM) of dimension 9 associated
with the Deligne–Mostow lattice LDM. Likewise the mirror complement is
denoted B

◦(LDM) with quotient (B◦/Γ)(LDM). The Deligne–Mostow period
map

PerDM : M0,12/S12 → (B◦/Γ)(LDM)

is an isomorphism of orbifolds. The stable locus where no more than 5
points collide is mapped onto the full ball quotient. The minimal strictly
semistable locus is a single point with the collision of the 12 points into two
groups of 6 points, which corresponds to the unique cusp of the ball quotient
in the Baily–Borel compactification.

3 Theorem of Couwenberg

Consider the complex vector space V5 = {z = (z1, · · · , z5) ∈ C
5;
∑

zi = 0}
with the reflection representation of the symmetric group S5. The Coxeter
group S5 = W (A4) has standard generators si of order two (i = 1, · · · , 4),
and together with the braid relations this is the Coxeter presentation of
S5. The elementary symmetric functions σ2, · · · , σ5 of degrees 2, · · · , 5 are
a basis for the ring of invariant polynomials. The discriminant polynomial

D(σ2, · · · , σ5) =
∏

i 6=j

(zi − zj)

is the square of the product of the 10 mirror equations, and D = ∗σ45 + · · ·
is an explicit polynomial in σ2, · · · , σ5.

Because the Hermitian form on the Eisenstein lattice L(A4) is positive
definite the group U(L(A4)) is finite. Coxeter has shown that the triflection
representation

A(A4) → U(L(A4))

is surjective, and the cubic relations t3i = 1 together with the braid relations
give a presentation of U(L(A4)). His proof was by computer verification
[17].

By the Chevalley theorem the ring of invariant polynomials on C⊗L(A4)
is a polynomial algebra on four homogeneous generators, whose degrees are
computed to be 12, 18, 24, 30. There are 40 mirrors and the discriminant is
the cube of the product of the 40 mirror equations. Orlik and Solomon have
shown that the generating homogeneous invariants can be chosen in such a
way, that the discriminant polynomial has the exact same expression as the
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discriminant polynomial D(σ2, · · · , σ5) for the symmetric group S5. Their
proof was again by computer verification [35].

In his thesis Couwenberg has explained these results in a geometrically
meaningful way [15], and for this reason we also write LC = L(A4) and call
it the Couwenberg lattice. One can think of his proof as the statement that
the top horizontal arrow in the commutative period diagram

V◦
5/S5

PerC−−−−→ (C⊗ LC)
◦/U(LC)





y





y

V5/S5
PerC−−−−→ (C⊗ LC)/U(LC)

is an isomorphism of manifolds, with V◦
5 = {z ∈ V5; zi 6= zj ∀ i 6= j}

for the mirror complement as before. The Couwenberg period map PerC is
defined in terms of similar but algebraic Lauricella hypergeometric functions
associated with configurations of 6 points on the curve P = C ⊔ {∞}, with
one point at ∞ of multiplicity 7 and 5 unordered points of multiplicity 1
on the affine line C. Whereas the Deligne–Mostow period map is related to
the geometric invariant theory of the semistable points for binary forms of
degree 12 the Couwenberg period map is related to the unstable points in
the null cone. Therefore

Πorb
1 ((C ⊗ LC)

◦/U(LC)) = Π1(V◦
5/S5) = Br5(C)

is just the Artin braid group on 5 strands in C. Note that in this case
the orbifold fundamental group and the ordinary fundamental group are the
same by standard finite reflection group theory.

Scholium 3.1. The quotient of the orbifold fundamental group

G(LC) = Πorb
1 ((C ⊗ LC)

◦/U(LC)) = Br5(C)

by the subgroup generated by the squares of the meridians is the symmetric
group S5.

The group S5 is just the Galois group of the ramified covering

V5 → V5/S5

for the natural action of S5. Couwenberg obtained similar results for the
case Sn+1 =W (An) acting on Vn+1 and A(An) → U(L(An)) for n = 1, 2, 3, 4
[15],[16]. The finite groups U(L(An)) have 1, 4, 12, 40 mirrors and are the
triflection groups STk for k = 3, 4, 25, 32 in the Shephard–Todd list [38],[17].
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4 The orbifold fundamental group Πorb
1 (M0,n/Sn)

The orbifold fundamental group ofM0,n/Sn has been described by Looijenga
as a quotient of the affine Artin group A(Ãn−1) with explicit relations [31]
as follows. Let X be C

×, C or P = C
× ⊔ {0,∞}, and let us denote by

X(n) the configuration space of (unordered) subsets of X of cardinality n.
The braid group of X with n strands Brn(X) is the fundamental group of
X(n). The latter requires the choice of a base point and so is only defined
up to conjugacy. The group Homeo(X) of homeomorphism of X acts also
on X(n). The image of Π1(Homeo0(X), 1) in Brn(X) is a normal subgroup,
and the quotient shall be referred to as the braid class group BrCln(X) on
n strands in X.

First consider the case X = C
×. Take as base point n

√
1 the set of nth

roots of 1. There are two special elements R and T in Brn(C
×): R is given

by the loop of the rotation of n
√
1 over exp(2πit/n) for t ∈ [0, 1], while T

is represented by the loop that leaves all elements of n
√
1 in place except

1 and exp(2πi/n) which are interchanged by a counterclockwise half turn
along the circle with center [1+exp(2πi/n)]/2 and radius |1−exp(2πi/n)|/2
(say n ≥ 5). These two elements generate Brn(C

×), but in order to get a
more useful presentation it is better to enlarge the number of generators by
putting Tk = RkTR−k for k ∈ Z/nZ. The elements Tk satisfy the affine
Artin relations

TkTk+1Tk = Tk+1TkTk+1 , TkTl = TlTk

for all k, l ∈ Z/nZ with k− l 6= ±1, and together with the obvious relations

RTkR
−1 = Tk+1

this gives a presentation of Brn(C
×) with generators R,T0, · · · , Tn−1. The

element Rn comes from a loop in C
× ⊂ Homeo0(C×). Hence Rn dies in

BrCln(C
×) and in fact BrCln(C

×) is obtained from Brn(C
×) by imposing

the single extra relation Rn = 1.
Next consider the case X = C. It is easy to check that the elements

R,T0, T1, · · · , Tn−1 satisfy in Brn(C) the additional relations

R = T1T2 · · ·Tn−1 = T2 · · · Tn−1T0 = · · · = T0T1 · · ·Tn−2

by filling in the origin 0. For example, for n = 12 the picture
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bC b

b

b
b

b

b

b

b

b
b

b

b

shows that the loop T1 · · ·T11 is homotopic to R if the origin is filled in.
This gives the familiar presentation of Brn(C) with generators T1, · · · , Tn−1

and the usual Artin relations

TkTk+1Tk = Tk+1TkTk+1 , TlTm = TmTl

for k, k + 1, l,m ∈ {1, · · · , n − 1} and l −m 6= ±1. The Garside element ∆
in Brn(C) is well defined, and its square ∆2 = Rn generates the center of
Brn(C) for n ≥ 3 [19].

Finally consider the case that X = P is the projective line. It is easy to
check that the elements R,T0, T1, · · · , Tn−1 satisfy in Brn(P) the additional
relations

R = T1T2 · · ·Tn−1 , R
−1 = Tn−1Tn−2 · · ·T1

by filling in 0 and ∞ respectively. Since T1T2 · · ·Tn−1 and Tn−1Tn−2 · · · T1
have the same nth power in Brn(C) the above relations already imply that
R2n dies in Brn(P). This gives the presentation of Brn(P) due to Fadell
and van Buskirk [22]. In the braid class group BrCln(P) we already have
the relation Rn = 1 from BrCln(C

×). Since BrCln(P) is the same thing as
the orbifold fundamental group Πorb

1 (M0,n/Sn) we arrive at the presentation
with generators T1, · · · , Tn−1 and relations the usual Artin relations together
with

T1 · · ·Tn−2T
2
n−1Tn−2 · · · T1 = 1 , (T1T2 · · · Tn−1)

n = 1

which was obtained by Birman [9].
Combining these results with the Deligne–Mostow period map we arrive

at the following conclusion, which should be thought of as a positive answer
to the analogue of the conjecture of Allcock for the Deligne–Mostow lattice
LDM rather than the Allcock lattice LA.

Scholium 4.1. The quotient of the orbifold fundamental group

G(LDM) = Πorb
1 ((B◦/Γ)(LDM))

by the subgroup generated by the squares of the meridians is the symmetric
group S12.
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The group S12 is just the Galois group of the covering

M0,12 → M0,12/S12

for the natural action of S12.

5 Acute angled polytopes in real hyperbolic space

Let V be a real vector space of finite dimension n + 1 with a symmetric
bilinear form 〈·, ·〉 of Lorentzian signature (n, 1). The set

B(V ) = P({v ∈ V ; 〈v, v〉 < 0}) ⊂ P(V )

is a model of real hyperbolic space of dimension n. Suppose we have given
a spanning subset {ei; i ∈ I} of V such that its Gram matrix G with entries
gij = 〈ei, ej〉 satisfies gii > 0 and gij ≤ 0 for all i 6= j. The set

P = P({v ∈ V ; 〈v, v〉 < 0, 〈v, ei〉 ≥ 0 ∀i ∈ I})
is called an acute angled convex polytope in the hyperbolic space B(V ).
We associate with this given set {ei; i ∈ I} a Coxeter diagram with nodes
labeled by I and two nodes i, j ∈ I are connected if gij < 0.

For the theory of hyperbolic reflection groups such polytopes have been
studied to a great extent by Vinberg [43]. A subset J ⊂ I is called elliptic,
parabolic or hyperbolic if the Gram matrix GJ of the subset {ej ; j ∈ J} is
positive definite, positive semidefinite, or indefinite respectively. For J ⊂ I
an elliptic subset the face

P J = P({v ∈ V ; 〈v, v〉 < 0, 〈v, ei〉 ≥ 0 ∀i /∈ J, 〈v, ej〉 = 0 ∀j ∈ J})
of P is not empty (by the Perron–Frobenius theorem) and of codimension
equal to the cardinality |J | of J . It can be shown that all faces of P in B(V )
are of this form. Moreover the orthogonal (geodesic) projection of B(V )
onto the codimension |J | hyperbolic subspace of B(V ) containing the face
P J maps the polytope P onto its face P J (see §3 of [43]).

The polytope P has finite hyperbolic volume if and only if

P({v ∈ V ; v 6= 0, 〈v, ei〉 ≥ 0 ∀i ∈ I}) ⊂ P({v ∈ V ; v 6= 0, 〈v, v〉 ≤ 0})
but this can be cumbersome to check in concrete examples. A subset J ⊂ I
is called critical if J is not elliptic, but K is elliptic for all proper subsets
K of J . Clearly critical subsets of I are connected subsets of the Coxeter
diagram. For J a subset of I we denote by Z(J) the subset of I of all nodes
that are not connected to J . The next theorem is a special case of a more
general result of Vinberg (see theorem 4.1 of [43]).
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Theorem 5.1 (Vinberg). Suppose P is an accute angled polytope in B(V )
as above, such that each critical subset J of I is parabolic. Then the polytope
P has finite volume in B(V ) if and only for each critical (parabolic) subset J
of I the subset N(J) := J ⊔Z(J) is still parabolic with GN(J) of rank n− 1.

Hence the subset N(J) = J1 ⊔ · · · ⊔ Jr in the theorem is a disjoint union
of parabolic subdiagrams, and corresponds to an ideal vertex PN(J) of P .
The local structure of P near such an ideal vertex is a product of an interval
(0, ε) with a product of r simplices of dimensions |J1| − 1, · · · , |Jr| − 1.

6 The 12-cell of dimension 9

The Eisenstein lattice LDM is equal to the quotient of L(Ã11) by its kernel
of dimension two. It has the roots εi for i ∈ Z/12Z as a generating set.
Suppose the nodes with even index are black and with odd index are white.
Then the Hermitian form is given by

〈εi, εi〉 = 3 , 〈εi, εi+1〉 = (−1)iθ , 〈εj , εk〉 = 0

for all i, j, k ∈ Z/12Z with |j − k| ≥ 2. We shall extend scalars from the
Eisenstein integers Z[ω] to Z[ 12

√
1] and put

e2j = iε2j , e2j+1 = ε2j+1

for all j ∈ Z/12Z, and write V for their real span. The Gram matrix of
{ei; i ∈ Z/12Z} becomes

〈ei, ei〉 = 3 , 〈ei, ei+1〉 = −
√
3 , 〈ej , ek〉 = 0

for all i, j, k with |j − k| ≥ 2. The Coxeter diagram is of type Ã11 and the
connected subdiagrams of type An are elliptic for n = 1, 2, 3, 4, parabolic
for n = 5, and hyperbolic for n = 6, 7, 8, 9, 10. The critical subdiagrams
are the subdiagrams of type A5, and deleting the two adjacent nodes in the
Ã11 diagram leaves us with another subdiagram of type A5. The rank of the
Gram matrix of these two disjoint A5 diagrams is 8, which is the rank of L10

minus 2. The conditions of the theorem of Vinberg are therefore satisfied
and we conclude that the acute angled polytope

P = P({v ∈ V ; 〈v, v〉 < 0, 〈v, ei〉 ≥ 0 ∀i ∈ I})

has finite volume in B(V ). It has an isometric action by the dihedral group
D12 of order 12, which acts transitively on the 12 codimension one faces
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of P . Its center is called the Weyl point w0 which has equal distance to
all 12 codimension one faces. The acute angled polytope P of dimension 9
has finite hyperbolic volume by the Vinberg criterion and will be called the
12-cell.

Suppose n ≥ 3 and we are given 0 < µ1, µ2, · · · , µn < 1 with
∑

µj = 2.
If z1 < z2 < · · · < zn are n successive real points and z = (z1, · · · , zn) then
the Schwarz–Christoffel transformation

t 7→ v(z; t) =

∫ t

zn

(s− z1)
−µ1(s− z2)

−µ2 · · · (s− zn)
−µnds

(with the integrand s 7→ (s− z1)
−µ1(s− z2)

−µ2 · · · (s− zn)
−µn single valued

and holomorphic on the extended complex plane C⊔{∞} minus a cut along
the interval [z1, zn] and having Laurent series expansion at ∞ of the form
s−2(1 + O(1/s)), and with the integration path from zn to t avoiding the
interval [z1, zn] except for its starting point) maps the upper half plane
ℑt > 0 conformally onto a convex polygon with vertices

v1 = v(z; z1) > 0, v2 = v(z; z2), · · · , vn−1 = v(z; zn−1), vn = v(z; zn) = 0

and interior angles (1 − µj)π ∈ (0, π) at vj summing up to
∑

(1 − µj)π =
(n−2)π as should. By the reflection principle the lower half plane is mapped
conformally on the mirror image of this polygon under reflection in the real
axis.

b b b b b b

z1 z2 z3 z4 z5 z6

µ1π

µ2π

b b

b

b
b

b

v6 v1

v2

v3

v4

v5

The directed edge functions

wj = wj(z) =

∫ zj+1

zj

(s− z1)
−µ1(s− z2)

−µ2 · · · (s − zn)
−µnds

satisfy wj = vj+1−vj and are called Lauricella FD hypergeometric functions
of the variable z. If we put ωj = exp πi(µ1 + · · ·+ µj) then the edge lengths
lj = ωjwj are positive real numbers (or functions of z) and satisfy the two
linear relations

∑

ωj lj(z) =
∑

ωjlj(z) = 0
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making the span V of the vectors l = (l1, · · · , ln) a real vector space of
dimension (n− 2).

The cone V+ = {l ∈ V ; lj > 0 ∀j} gets identified with the space of all such
polygons with vertices v1 > 0, v2, · · · , vn = 0 and edge lengths lj > 0 from
vj to vj+1, and is called the polygon space of type µ = (µ1, · · · , µn). The
spanning vector space V carries a natural Lorentzian inner product for which
the norm 〈l, l〉 of l ∈ V+ is equal to minus (due to our signature convention)
the area of the corresponding polygon. The Hermitian extension to the
complexification C ⊗R V is a monodromy invariant Lorentzian Hermitian
form on the space of Lauricella functions with parameter µ. For proofs and
further details we refer to the discussion of the Lauricella FD function by
Couwenberg in his thesis [15].

If the parameter m = (m1, · · · ,mn) occurs on the Deligne–Mostow list
then it follows from the Deligne–Mostow theorem that a point in V+/R+

uniquely determines the configuration z = (z1, · · · , zn) ∈ M0,n/Sm, which
by the Schwarz–Christoffel theory a fortiori should be real. Hence the real
hyperbolic polytope V+/R+ as subset of the complex ball quotient B/Γ lies
in fact in B

◦/Γ.
The parameter µ = (1/6, · · · , 1/6) is the relevant example. The set V+

is identified with the space of 12-gons with vertices v1 > 0, v2, · · · , v12 = 0
and all interior angles equal to 5π/6. The 12-cell P = V+/R+ is just the
space of such 12-gons up to a positive scale factor. The central Weyl point
w0 in P at equal distance to all 12 codimension one faces corresponds to the
regular 12-gon with the lengths of all edges equal.

Scholium 6.1. The interior of the 12-cell P of dimension 9 is contained
in the mirror complement B◦(LDM) of the Deligne–Mostow ball. The Weyl
point w0 in P lies at equal distance to all 12 codimension one faces. The
cyclic group C12 of order 12 acts on P by isometries leaving w0 fixed.

7 The Coxeter diagram I26

The projective plane P
2(3) over a field of 3 elements has 13 points and 13

lines. The incidence diagram I26 has 26 nodes of which 13 are marked bold
(the points) and 13 hollow (the lines) with index i taking values 1, 2, 3. A
thin bond in the figure below indicates that the two end nodes are incident
if their indices coincide, while a thick bond indicates that the end nodes
are incident if their indices differ. So a thick bond represents altogether 6
different bonds, and a thin bond just 3. The diagram I26 has valency 4.
The group of diagram automorphisms of I26 preserving the marking of the
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nodes is the group L3(3) = PGL3(3) of order 5616 = 24 · 33 · 13. The group
L3(3) : 2 of order 11232, obtained by adjoining an outer automorphism of
projective duality between points and lines, acts as group of automorphisms
of the diagram I26 with all nodes unmarked.

bC b bC b

b bC

b bC

b bCa f

bi ei

ai fi

ci di

gi zi

Note that the subdiagram with nodes abicidieifi (all i) by deleting the
remaining nodes faigizi (all i) and all bonds connected to these remaining
nodes is the Y555 diagram, which is just a maximal subtree of I26. Deleting
the triple node a of this Y555 diagram shows that the I26 diagram has a sub-
diagram of type 3A5. Adjoining a3 and deleting b3 shows that I26 also has a
subdiagram of type A4 + Ã11 with the 4 nodes c3d3e3f3 making A4 and the
12 nodes ab1c1d1e1f1a3f2e2d2c2b2 making Ã11. The Ã11 subdiagram is also
called a free 12-gon. The remaining 10 nodes a1a2b3fgizi (all i) are each con-
nected to both this A4 subdiagram and this Ã11 subdiagram. Hence A4 and
Ã11 determine each other uniquely as the maximal disjoint complementary
subdiagram in I26. In our previous notation Z(A4) = Ã11 and Z(Ã11) = A4.
Observe also that abi and dieifizi (all i) yields a subdiagram of I26 of type
4D4.

8 The 26-cell of dimension 13

The set I = P⊔L of 26 vertices of the Coxeter diagram I26 splits as a disjoint
union of the 13 points and the 13 lines of P2(3). If εi is the generating set
of the Allcock lattice LA with Gram matrix

〈εi, εi〉 = 3 , 〈εj , εk〉 = 0 , 〈εp, εl〉 = θ
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for all i, for all disconnected j 6= k and for all connected p ∈ P and l ∈ L
then we introduce a new set {ei} simply by

ep = iεp, el = εl

for p ∈ P and l ∈ L. The Gram matrix of ei becomes the real symmetric
matrix

〈ei, ei〉 = 3 , 〈ei, ej〉 = 0 , 〈ej , ek〉 = −
√
3

for all i, j, k with i 6= j disconnected and j 6= k connected. If for each line
l ∈ L we put dl =

√
3el +

∑

p∼l ep then it is easy to check that

〈dl, eq〉 = 0 , 〈dl, em〉 = −
√
3

for all q ∈ P and m ∈ L. Hence dl − dm is a null vector for all l,m ∈ L and
we conclude that the real subspace V spanned by the vectors {ei; i ∈ I} is
a real Lorentzian vector space of dimension 14.

The acute angled hyperbolic polytope of dimension 13

P = P({v ∈ V ; 〈v, v〉 < 0, 〈v, ei〉 ≥ 0 ∀i ∈ I})

in B(V ) will be called the 26-cell. It is easy to check that the critical sub-
diagrams are the connected parabolic diagrams of type A5 or D4. Since
N(A5) = 3A5 and N(D4) = 4D4 are both parabolic and have both Gram
matrices of rank 12 it follows from the Vinberg criterion that P is a finite
volume convex hyperbolic polytope.

The 26-cell P has two natural vertices wP perpendicular to all ep with
p ∈ P and wL perpendicular to all el with l ∈ L. The midpoint w0 on the
geodesic from wP to wL is called the Weyl point. The group L3(3) : 2 of
diagram automorphisms of the unmarked Coxeter diagram I26 acts a group
of isometries of P leaving the Weyl point w0 fixed. Under this symmetry
group the 26-cell P has two inequivalent ideal vertices of the above types
3A5 and 4D4. The next conjecture is the analogue of Scholium 6.1 for the
26-cell P .

Conjecture 8.1. The interior of the 26-cell P is the connected component
of B(V )∩B

◦(LA) containing w0. In other words, the interior of P does not
meet any mirror of the complex Allcock ball B(LA).

Partial results towards this conjecture are due to Basak [8]. He shows
that the 26 mirrors supported by the codimension one faces of the 26-cell P
are exactly those mirrors in the Allcock ball B(LA) that are nearest to the
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Weyl point w0. The real subball B(V ) ⊂ B(LA) supported by P contains all
26 shortest geodesics from w0 to these nearest mirrors, and this characterizes
B(V ). In particular for each vertex i of I26 the geodesic from w0 to the
orthogonal projection wi of w0 on the codimension one face P i of P does
not meet any mirror in B(L) before it reaches wi.

Basak defines a curve γi in B
◦ with begin point the Weyl point w0 and

end point ti(w0). Here ti is the triflection with eigenvalue ω leaving the
codimension one face P i fixed. The curve γi is almost the geodesic from w0

to wi and then continues geodesically to ti(w0). However this curve hits the
mirror supported by P i at wi and so instead shortly before arriving at wi
it makes a one third turn in the complex line through w0, wi, ti(w0). The
curve γi defines the meridian element Ti of Π

orb
1 ((B◦/Γ)(LA), w0).

For i, j two different nodes of I26 Basak proves the Artin braid relations

TiTjTi = TjTiTj , TiTj = TjTi

in case i, j are connected or disconnected respectively along the following
lines. Let wij be the orthogonal projection of w0 on the codimension two
face P ij of P . Basak shows that the interior of the convex hull of the 4
points w0, wi, wj , wij does not meet any mirror of B(LA). The curve γi
can be continuously deformed in B

◦(LA) to a curve γij going geodesically
from w0 to wij and shortly before arriving at wij making a one third turn
around the mirror supported by P i. Likewise γj can be deformed to γji.
The braid relation for the two corresponding meridians is a local relation of
the mirror arrangement near wij and follows from the work of Couwenberg
as described in Section 3, or by giving the explicit homotopy as Basak did.
If i, j are connected then four mirrors pass through P ij while in case i, j are
disconnected only two orthogonal mirrors pass trough P ij.

The group L3(3) :2 of diagram automorphisms of the unmarked diagram
I26 acts by isometries on the 26-cell P . The Weyl point w0 is a fixed point
for this action. The infinitesimal action of L3(3) : 2 on the tangent space
of B(V ) at w0 decomposes as a direct sum of a one dimensional represen-
tation (coming from the geodesic through wP and wL) and an irreducible
representation of dimension 12 on the orthogonal complement. This is the
smallest dimensional irreducible representation of L3(3) :2 that is nontrivial
on L3(3).

Let J be a subdiagram of I26 of type A4. Any two such subdiagrams are
conjugated under L3(3) :2 and so we can assume that J consists of the nodes
c3d3e3f3 in the notation of Section 7. The complementary subdiagram Z(J)
obtained by deleting all nodes of J and those connected to J contains the

19



12 nodes ab1c1d1e1f1a3f2e2d2c2b2 and is of type Ã11. The face P J of P of
codimension 4 is just the 12-cell of dimension 9 in the Deligne–Mostow ball
as discussed in Section 6. We denote by B(U) the real hyperbolic space
supported by P J , viewed as subspace of the real hyperbolic space B(V )
supported by P . The subgroup of L3(3) : 2 preserving the face P J is the
dihedral groupD12 of order 24 permuting the nodes ab1c1d1e1f1a3f2e2d2c2b2
in cyclic way or inverting them.

Lemma 8.2. Any positive definite Eisenstein lattice of rank 5 containing
L(A4) as a primitive sublattice and spanned by L(A4) and a complementary
root is of the form L(A4)⊕ L(A1).

Proof. By assumption the lattice has a root basis ε1, · · · , ε4, ε5 with the first
four vectors the standard basis of L(A4). If we assume that

〈ε1, ε5〉 = xθ , 〈ε2, ε5〉 = yθ , 〈ε3, ε5〉 = zθ , 〈ε4, ε5〉 = wθ

then the determinant of the Gram matrix (divided by 9) is easily found to
be

3− xx− ww − 2(yθ − x)(yθ − x)− 2(zθ + w)(zθ + w) +

−θ(yθ − x)(zθ + w) + θ(zθ + w)(yθ − x)

with x, y, z, w ∈ E . Since

2aa+ 2bb+ θab− θba = (a− bω)(a− bω) + (a+ bω)(a+ bω)

the above expression becomes

3− xx− ww − (a− bω)(a− bω)− (a+ bω)(a+ bω)

with a = yθ − x, b = zθ + w. This expression should be positive, and so

xx ≤ 1 , ww ≤ 1 , (a− bω)(a− bω) ≤ 1 , (a+ bω)(a+ bω) ≤ 1

and their sum is at most 2, so at least two terms are 0.
If x = w = 0 then a = yθ, b = zθ which implies y = z = 0. Similarly if

x = 0, a = bω then a = b = 0 which in turn implies y = z = w = 0. Finally
if a = bω = −bω then a = b = 0 and so x = y = z = w = 0.

Hence the complexification B(LDM) of B(U) in the Allcock ball B(LA)
is the intersection of 40 mirrors in B(LA), and B(U) = B(V ) ∩ B(LDM). By
the above lemma all other mirrors in B(LA) intersecting B(LDM) do so in
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a perpendicular way. The local structure of the 26-cell P near its face P J

is a product of P J with a real simplicial chamber PJ of dimension 4 of the
group U(L(A4)) corresponding to 5 ordered points on R with zero sum, as
discussed in Section 3.

Let J be the given subset of I26 of type A4 with complement Z(J) of
type Ã11. Let wJ be the orthogonal projection on the face P J of the Weyl
point w0 of P . The point wJ is the central point of P J corresponding to the
regular 12-gon in the Deligne–Mostow picture. For j ∈ Z(J) let wjJ be the
projection on w0 on the face P jJ (with jJ standing for {j}⊔J), which is the
same as the orthogonal projection of wJ on the the codimension one face P jJ

of P J . Now Conjecture 8.1 implies that the curve γj can be continuously
deformed to a curve γjJ , which is a curve γ̃j in the tubular neighborhood
of BDM in BA with base point a nearby point w̃J of wJ conjugated by a
geodesic from this nearby point to w0.

b
w0

B(V )

B(U)b

bwj

wjJ b

wJ

Indeed the desired homotopy is obtained using the orthogonal projection
of P onto its face P J . Under the identification of Z(J) with Z/12Z the
meridian elements Ti ∈ Πorb

1 (B◦/Γ, w0) for i ∈ Z/12Z satisfy the Artin braid
relations

TiTi+1Ti = Ti+1TiTi+1 , TiTj = TjTi

for i− j 6= ±1 of the affine Artin group of type Ã11.
The inclusion map of the face P J of P gives rise to a holomorphic map

from the Deligne–Mostow ball quotient (B/Γ)(LDM) to the Allcock ball quo-
tient (B/Γ)(LA). This map is an immersion, but not an injection, since
the image of (B/Γ)(LDM) in (B/Γ)(LA) has triple self intersection along a
one dimensional ball quotient, which is isomorphic to the modular curve
H+/PSL(2,Z). This one dimensional ball quotient is associated with the
Eistenstein hyperbolic plane H inside LDM = H ⊕ L(A4) ⊕ L(A4) and the
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order three symmetry comes from a permutation of the three factors L(A4)
inside the Allcock lattice LA = H ⊕ L(A4)⊕ L(A4)⊕ L(A4).

Let N◦ be the pull back of a small tubular neighbourhood of (B/Γ)(LDM)
inside the mirror complement (B◦/Γ)(LA) under the natural immersion
(B/Γ)(LDM) → (B/Γ)(LA). Then we have a fiber bundle

N
◦ → B

◦/Γ(LDM)

with fiber a small ball around the origin in (C⊗L(A4))
◦ modulo U(L(A4)).

This gives rise to an exact homotopy sequence

1 → Πorb
1 ((C ⊗ L(A4))

◦/U(L(A4))) → Πorb
1 (N◦) → Πorb

1 (B◦/Γ(LDM)) → 1

and taking the quotient by squares of meridians we conclude by Scholium 3.1
and Scholium 4.1 that the group Πorb

1 (N◦) modulo squares of meridians is
isomorphic to S5×S12. Indeed, the only action of S12 by automorphisms on
S5 is the trivial action. Hence the image of the subgroup generated by the
Ti for i ∈ Z/12Z under the homomorphism ϕ : W (I26) → G/N is a factor
group of S12. In other words, the free 12-gons are deflated in G/N .

As a consequence of Conjecture 8.1 in combination with Theorem 1.6
and Theorem 1.2 we find that the orbifold fundamental group G(LA) of the
Allcock ball quotient(B◦/Γ)(LA) modulo the squares of the meridians is a
factor group of the bimonster M ≀ 2. The factor groups of M ≀ 2 are either
M ≀2 or have order 2 or 1. This provides additional evidence for the Allcock
conjecture. The following remark I learned from Eduard Looijenga.

Remark 8.3. One can show that the orbifold fundamental group of the
image of N◦ in B

◦/Γ(LA) is obtained from that of N◦ by means of an HNN
extension (after Higman, Neumann and Neumann [37]). To be precise, the
fiber orbifold fundamental group Πorb

1 (Fiber) ⊂ Πorb
1 (N◦) also appears as

the image of an embedding h : Πorb
1 (Fiber) → Πorb

1 (Base) and the HNN
extension in question simply adds an extra generator t to Πorb

1 (N◦) subject
to the relation that conjucagy with t restricted to Πorb

1 (Fiber) is a lift of h.
So if we subsequently divide out by the (normal) subgroup generated by the
squares of the meridians, then we get an HNN extension of S5×S12 relative
to the standard inclusion of S5 in the second factor. Note that Conway and
Pritchard [13] characterize the bimonster as the smallest quotient of this
HNN extension, which still contains S5 × S12 and is not isomorphic to S17.

Remark 8.4. In our joint preprint with Sander Rieken [25] Conjecture 1.3
was proved, but as pointed out to us by Daniel Allcock the proof is incomplete.
What we did check correctly is that the interior of the 26-cell P does not have
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a real codimension one intersection with the norm 3 mirrors. This proves
that the interior of P minus the complex mirrors is connected. But we
overlooked the possibility of real codimension two intersections. Hence it is
still not proven that the interior of P minus the mirrors is contractible, and
that is what is needed in the above argument. We intend to return to this
problem in the future.

Remark 8.5. The analogue of Conjecture 8.1 for similar ball quotients has
now been checked for the Allcock–Carlson–Toledo ball quotient corresponding
to cubic surfaces [5], [24] and for the Kondo ball quotient corresponding
to quartic curves [29], [36]. In both cases the interior of the analogous
real cell P does not meet any complex mirrors. In turn, we have given a
geometric explanation of the corresponding odd presentations for the Weyl
group W (E6) as factor group of the Coxeter group W (P10) of the Petersen
graph P10 modulo deflation of the free hexagons [24], a presentation found
by Christopher Simons [41]. Likewise the Weyl group W (E7) is the factor
group of the Coxeter group W (T10) of the graph T10 modulo deflation of the
free octagons. Here T10 is the tetrahedral graph, which has 10 nodes at the
4 vertices and the 6 midpoints of the edges of the tetrahedron, and has 12
simply laced branches along the half edges of the tetrahedron [36].
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